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Numerical study of Yang-Mills classical solutions on the 
twisted torus 

M Garcia P&ez and A GonzAlez-Arroyo 
Departmento Fisica Te6rica C-XI, Univenidad Aut6noma de Madrid. M-ad6d 28049, Spain 

Received 15 June 1992 

Abstract; We use the littice cooling method to investigate the m c t m  of some gauge fixed 
SU(2) Yang-Mills classical solutions of the Euclidean equations of motion which are defined in 
the 3-tONS with symmetric twisted boundary conditions. 

1. Introduction 

In this paper we will analyse an SU(2) Yang-Mills field configuration which is periodic 
in 3-space and tends to a pure gauge in both t = &CO. This configuration is a solution 
of the classical Euclidean equations of motion and arises naturally when one studies gauge 
fields on the spatial torus with twisted boundary conditions (mc) 111. In particular, we fix 
the torus to have equal period in all three directions and a twist vector m = (1,1,1). The 
presence of the torus breaks the SO(3) 'rotational symmetry into the cubic group. If we 
fix, without loss of generality, @e length of the spatial torus to 1 = 1, we may write the 
boundary conditions 

A,(x + i j )  ~A, (x)u~ (1.1) 

where q are the Pauli matrices and Z; the unit vector in the ith direction. The choice of 
the Pauli matrices as the twist matrices can be regarded as a partial gauge fixing of the 
problem. The remaining group of gauge transformations must satisfy 

(1.2) 

This, however, is not the most general internal symmetry transformation of OUT problem. 
One can perform a transformation 

sl(x + ii) = qin(x)u;. 

A,(x) -+ A:@) = in(z)(x)A,(x)slO)t(x) + iin(d(x)8,in20)t(.x) (1.3) 

with 

sl(Z)(X + it) = ziuiin(qx)ui (1.4) 

and zi = +I. This wansformation preserves the boundary condition (1.1) and leaves the 
Yang-Mills action invariant. Nevertheless, if zi # 1 for some i '=  1,2,3 the transformation 
is not, strictly speaking, a gauge transformation since it modifies the values of. the. Wilson 
loops associated with non-contractible loops (F'olyakov loops): 

W ( y )  3 W'(y )  = zy 'y 'w(y)  (1.5) 
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where w i ( y )  is the winding number of the loop in the ith direction. We will call these 
transformations singular gauge transformations and the group of these transformations 
(modulo ordinary gauge transformations) is isomorphic to Z:. As we will see later, these 
transformations act non-trivially on our gaugefield configuration. 

The configuration with smallest action (S = 0) wjth our boundary conditions is of the 
pure gauge form 

A,@) = isl(z)(x)a,fZ(z)+(x) (1.6) 
with sl(:)(x) satisfying equation (1.4). However, it turns out [Z] that there are only two 
gauge non-equivalent configurations of this type, those with zj = 1 for all i, and zi = -I 
for all i. In the A0 = 0 gauge these configurations are constant in time and equal to the 
minima of the potential energy Tr E?. The problem becomes that of a Zz symmetric 
potential with two non-symmetric minima. The order parameter distinguishing these two is 
the Polyakov loop winding the torus once along each direction (wj = 1). Just as in the case 
of the A@4 potential (and negative mass squared), we can investigate the solution which 
interpolates between the two minima as time goes from --03 to +W. This is an instanton 
solution and gives rise to the leading weak-coupling contribution to the energy splitting 
between the ZZ symmetric and antisymme~c states. 

These instanton configurations are precisely the solutions which we are after. They 
have half-integer topological charge and are precisely the minimum action configurations 
in a 4-torus with infinite length and with mc both in time and space. The twist in time 
noi = 1 eliminates the constant minima solutions. 

The existence of these configurations was proved by Sedlacek [3]. In a previous paper 
[4] we investigated the behaviour of these solutions by using the lattice approximation 
and the cooling method [5].  There it was shown that the total action and energy of the 
lattice minimum action configurations scale towards a continuum value. The value of the 
continuum action is very close to 4nZ, the absolute minimum for a topological charge Q 
of 112. Indeed, this minimum is only attained by a self-dual or anti-self-dual configuration, 
so our configurations must be very approximately, if not exactly, self-dual. If we perform 
a panty transformation to this self-dual instanton configuration we get an anti-self-dual 
anti-instanton configuration with Q = -112. 

The purpose of this paper is to report a more extensive and accurate analysis of the 
lattice minimum configurations in order to answer some questions which were not settled by 
our previous paper. Apart from giving additional support to the question of scaling towards 
the continuum and self-duality, we have shown that there are indeed sixteen different gauge- 
inequivalent configurations (eight instantons and eight anti-instantons) which can be obtained 
by acting with the group of singular gauge transformations, parity and time reversal on one 
of them. All these configurations are non-Abelian and cubic-symmetric. We have obtained 
functional expressions for the various physical quantities, including the vector potentials and 
field strengths in a suitable gauge, which describe their qualitative features. Satisfactory 
quantitative description of the data has been obtained by using these functional expressions 
and the first few terms in a Fourier expansion of the functions involved. We also report the 
steps that we have taken in the direction of finding an analytic expression for the solution. 
Although our attempts in this respect have not achieved the ultimate goal, we have explored 
several paths involving some lenghthy and non-trivial manipulations, and our results can be 
of great help for future investigations. 

Our solution, being non-Abelian, is very different to the Abelian solutions [6] which 
are known to exist for other twists, other values of the topological charge and additional 
periodicity in time. However, it is much more similar to the instanton solution on Ss x R. 
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In a recent paper.[7] this solution has been used to investigate the &dependence beyond 
the steepest descent. It is in this spirit that our solution is physically relevant. The reader is 
directed to 171 and the earlier [XI to see the role of our instanton solution for the Yang-Mills 
dynamics, in the weak-coupling limit. Its relevance beyond this limit is unknown. 

2. AnaIysis of the data 

Our strategy has been explained in [4]. We consider an N,‘ x Nr  lattice with TBCs. We use 
cooling to obtain configurations with smaller and smaller action. We stop once the value of 
the action has changed by less than over the last 100 cooling sweeps. To perform the 
analysis reported here we have used the~configurations which we employed in [4] together 
with new data which extend over larger lattices ( N 3 ,  N , )  = (11,29) and (15,29). We have 
little to add to the results of [4] concerning integrated quantities. The new data just give extra 
support to the conclusions presented there. The value of the action S is 39.234 and 39.347, 
for (11,29) and (15,29) in agreement with our extrapolation formula S = 47r’ - 29.7~’ 
(with a = l/Ns). The degree of self-duality is now X = 2lsE - SBI/SE + SB = 0.0045 
and 0.0033 for the same two lattices. We notice that  the^ errors introduced by the lattice 
approximation are smaller than 1% for integral quantities. This can be explained by the fact 
that they are O(a2). In the case of the vector potentials and the colour electric and magnetic 
fields at a given point Af(x), Eq(x)  and E:(x) ,  we expect errors of order a:  typically, 
then, 10% for our values of Ns.  One can. estimate more precisely. the size of these errors 
by several methods. For example comparing E; and E: at the same point the difference 
is never greater than 0.14 (representing 3% of the magnitude at those points). On average 
a difference of order 0.04 makes the x2 per degree of freedom of the comparison of order 
1. Other estimates of the errors can be deduced by comparing values for different Ns or by 
using different 1attice.approximants to the continuum value. The resulting errors depend on 
the quantity under consideration and on the value oft ,  but~stay within a factor of two of 
0.04 in all cases. We have chosen, thus, the value of 0.04 as a typical error which we will 
be using in all x2 fits of the data. 

2.1. Gauge-invariant quantities 

We start  analysing +e structure of our solution by looking at gaugeinvariant quantities. 
Consider first the colour electric and magnetic fields E;, E:. They can be regarded as six 
vectors in the three-dimensional colour space. Gauge transformations amount to rotations 
in this space. Thus, the gauge-invariant quantities are the scalar products and moduli of 
these vectors Mjj = Ei . E j .  Due to the approximate self-duality the colour magnetic fields 
give the same information within errors. Before stating the results of our analysis let us 
mention one technical point. Our interest is centred on the values of these quantities in 
the continuum limit. To extract these values one can use various lattice quantities all of 
which differ by an amount of order a. Nevertheless, in checking certain symmetries, it is 
 essential^ to choose lattice observables which respect the~lattice symmeny. For that reason 
we have extracted the colour field strength at each lattice point, Fju(rza), by averaging the 
four plaquettes attached to that point in each wu plane: 

4aZ 
b 1 

F,,(na) = - Tr(-iub[Pp,(n) + P,-,(n) + P-v,(n) + P-,-.(n)l] (2.1) 

where, for instance, P,-,(n) stands for the following product of lattice links: 

Pu-,(n) = U,(n)Ut(n - f i  + C)Ut(n - fi)U,(n - $1. 
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The previous quantity transforms in the right way under gauge transformations and is 
symmetric under cubic transformations around the point na. 

The main features of the solution are the following: 
(i) At each timc value there is a point of maximum energy density, which we will call 

the spatial centre of the instanton, whose coordinates are timeindependent and we will 
choose them as x = 0 .  Furthermore there is a time where the energy is maximal and we 
will choose it as the origin of time, t = 0. Our solution is cubic invariant with respect to 
the spatial centre and invariant under time reversal. The spatial centre is not one of the 
lattice points, but it can be located by interpolation. The same is true for the origin of time. 

(ii) For all times and at the spatial centre of the instanton one has Mij c( Sij. This 
orthogonality implies that the solution is not Abelian. Away from the centre the vectors E; 
cease to be mutually orthogonal but they are never collinear. 

(iii) We have fitted the moduli and scalar products at t = 0 to the first terms in a Fourier 
expansion. Our results are 

M Garcfa Perez and A Gondez-Arroyo 

Mu = c0s2(nx)(15.00 + 20.02[4(y) + @(z)l - 3.12COS2(7rY) COSZ(YrZ) 
+ 0.128sin2(2xy) sin2(2nz) - 0.18[cos2(ny) sin'(2nz) 

+ cos2(nz) sin2(2ny)l) + 32.744(~)4(z) - sin2(2zx) 

x (0.232 + 2.25[cosz(ny) + cos2(nz)] + 0.80cosz(ny) cos2(zz)) (2.2) 

M i 2  = -1.608[1 - O.~~~COS(~TZ) ]X(X)X(Y)  

where 

@ ( x )  = cos2(7rx) - 0.082sin2(2nx) 

(2.3) 

x ( x )  = sin(2nx) + 0.086sin(4nx). 

The quality of the fit is very good (see figure 1 for example). The remaining components 
are just obtained by the appropriate replacement of the indices and variables in the previous 
expression, in a way which is consistent with cubic invariance and parity invariance. Note 
that E? vanishes when x i  = f1/2 and xj = f1 /2 .  Note also that the solution seems 
perfectly smooth. 

We turn now our attention to non-local gauge-invariant quantities: the Polyakov loops. 
Due to the boundary conditions these variables are defined as 

sl,(x) = Texp [ i lG(x,x7 ~ , ~ ~ J r , ( x ' ) ~ e x p  I i l"@r,z) AV 4 (2.4) 

where yw(a, b) is a straight line in the positive p direction starting at a and ending at b, 
x' is the border of the torus patch, Texp is the ordered exponential and r,(x) the twist 
matrices. On the lattice these quantities are simply given by the ordered product of the 
p-links corresponding to the path y,(x). These quantities transform like Ei under gauge 
transformations and therefore the gauge-invariant quantities are just the scalar products in 
colour space Tr(sl,(x)slt,(x)) =-X,,(x) and the traces themselves 4 Tr(slfl(x)) = X,(x) .  

Since our instanton evolves in time from one pure gauge (1.6) (zi = 1) to another 
gauge-inequivalent one (zi = -l), and a representative of each class is given by sl , (x)  = 
rtiui(i = 1,2,3), we expect X j j  = -&j, Xi = 0 for large It]. Indeed our results agree 
with this situation. As a matter of fact X, can be fitted with a x z  = 0.005 per degee of 
freedom (with an absolute error of 0.04) to the formula 

X , = n m ,  (2.5) 
"frr 
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t 
. .  -1.5 ' . . , ' . . . . '  - . , ' . . . r  x 0 

-0.5 -03 -0.1 0.1 0.3 0.5 -1 -0.5 , 0 0.5 

Figure 1. The scalar product M12 = El . Ez plotted 
as a function of x for y 4 0.209 and z = ~ O .  The 
squares correspond to the lattice~values for N, = 11, ~ cuwe represents ihe function cos(~nlanh(0.69nt)). 
N, = 21.  they are compared with the prediction of 
equation (2.3). 

Figure 2. ma@) appearing in equation (2.5) is ploaed 
as a h c t i o n  of time for N, = 11, N, = 21. The full 

where mi = m(xj) for i = 1.2.3 and ma = mo(t). This is a very remarkable factorization 
property. The function m is parametrized as 

m(x) = c o s ( z x ) ( l +  csin2(rm)) (2.6) 

where C = -0.196 and mo(t) is given in figure 2. Note as well that the m functions are 
antiperiodic. Thus, by translating our solution by one period in any direction we get a new 
solution. In this fashion one generates four solutions out of one. Thus, we are not dealing 
with a unique instanton solution but rather with a family of solutions related by singular 
gauge transformations. 

2.2. Gauge-dependenr quantities 

In order to extract all the information from our numerical results we also have to obtain 
gauge-dependent information. In particular, one would like to extract the gauge potentials 
themselves in a suitable gauge. This turns out to be feasible and OUI results are presented 
in what follows. 

First of all one must introduce a simple gauge fixing, which respects most of the 
symmetry of the problem. It is natural to select A0 = 0, a condition which preserves all 
spatial symmetries. To completely specify the gauge one bas to fix the remaining time- 
independent gauge transformations. This can be done by fixing A(x,  t = -00) = 0 or 
equivalentty Q ( x ,  f = -CO) = iuj. This fixes the gauge completely including global gauge 
rotations. At t = +CO the gauge fields must coincide with a pure gauge (1.6) and in the 
Ao = 0 gauge this gauge transformation is indeed given by the temporal Polyakov loop 
Oo(x, t = -00) . Notice that OO transforms precisely l i e  equation (1.4) for zi = -1. The 
exact form of O&, t = -00) can be obtained in terms of the gaugeinvariant quantities 
~ T r ( O o ( x , t  1 = -00)) and $Tr(no(x,t  = -00) .  s l i (x , t  = -00)). These have been 
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obtained from our data and the result can be summarized by giving a functional form which 
describes these data with a xz = 0.01 per degree of freedom 

M Garcia Pbrez and A Gonzdlez-Arroyo 

(2.7) 

where fi = f ( x ; )  and f ( x )  = sin(nx)(l + Bcos2(nx)), with B = -0.172. Notice that 
f ( x )  is very similar to m(x + 1/2). Changing the value of B to C does not significantly 
change the quality of the fit. 

Now we turn our interest towards computing A&, t )  in the previously mentioned gauge. 
To extract these quantities from our lattice results implies some lengthy procedure. Apart 
from the typical order a errors we have to deal with some other sources of errors. Some 
errors arise through the gauge-fixing procedure due to the finite value of Nl /N, .  In this 
case Ai is never a pure gauge and cannot be set to zero. Nevertheless these errors are, 
for most purposes, quite small and can be monitored by varying N l / N , .  Our procedure 
to evaluate the gauge fixing on the lattice configuration is as follows. To evaluate the 
gauge-fixed value of a lattice link U,(n), we choose a lattice path going through this link 
and staaing and ending at some point P. This point is situated on the surface of minimum 
energy (smallest time nt = -(Nt - 1)/2) and the path is made of three parts y ~ ,  y~ and 
y3. The first and last paths are situated on the surface of time coordinate --(NI - 1)/2:y1 
joins P with P' = (-(NI - 1)/2, n), the point with equal spatial coordinates as the origin 
of the link U,(n). y3 joins P" = ( - i ( N ,  - l ) , r  + f i )  with P. yz moves from P' along 
the positive time direction, then goes through the link in question, and then back to P" 
along the negative time direction. We complete our gauge fixing by performing a global 
gauge transformation O(P) which rotates the spatial Polyakov loops O; starting at point P 
to the values iui. Summarizing these transformations we write down the expressions for 
the gauge transformed link Uk(n): 

uL(n) = O ( ~ ) u , u , u , O t ( P ) .  (2.8) 

Indeed, if the spatial links at the smallest time are a pure gauge configuration, U, and U, 
can be gauged to I .  Since in the temporal gauge U, = U,@), we see that U;(n) is really 
our gauge fixed link. 

In addition, the position of P and the choice of yl and y3 are irrelevant. However, as 
mentioned previously, we do not exactly have a pure spatial gauge for - (Nr  - 1)/2 and the 
actual choice of y, and y3 is relevant. To preserve the fact that (Eq.(2.8)) is a gauge 
transform of U,(n), one must choose P, y~ and y3 in a predetermined way for all lattice 
links. Our choice is as follows. The path y~ is obtained by running first in the 1 direction, 
next in the 2 direction and finally in the 3 direction. We finally obtain 

UL(n) = fi(P)L(n)u,(n)Lt(n + f i ) O + ( ~ )  (2.9) 

with 

";-I ";-I "i-1 

9,=0 91=0 6 - 0  
= n UI(P + 4181) n W P  + + l +  qz&) n U ~ ( P  + + n;& + 43~3) 

(2. IO) 
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where n), = nlL - Pw and Pp are the coordinates of point P .  
Once the data are gauge fixed we can extract the lattice approximants to the continuum 

fields. The potentials A; are taken to lie on the mid-point of the corresponding links. The 
magnetic fields BP, are computed by the plaquette averages mentioned before. Our results 
show the same qualitative features for both vector potentials and magnetic fields. These 
features are described by the following functional form which fits the data: 

0: = ql(r) cos(rry) cos(xzj(l+ q2(t)  cosi2irx))(l+ ~ ~ ( ~ ) c o s ( ~ x Y ) ) ( I  + 43(t) cos(zrrzj) , 

0: = ( I  + a l ( t )  cos(zrrx))(l+ a2(r) cos(2rrz)j[a3(tj sin(nz) cos(irx)(l+ ~ ( t )  cos(2ny)) 

(2.1 1) 

0: = (l+al(t) cos(2irxj) (l~+a2(t) cos(2iry))[--a3(t) sin(rry) cos(rrx)(l+a4(t) cos(2rrz)) 

+a&) cos(xz) sin(rrx) sin(2xyjl 

+as@) cos(xy) sin(irx) sin(2xz)l 

where 0: stands for either BP, E: or A;, but with different values of the parameters qi 
and ai. The remaining components of 0; can be obtained by cyclic permutations of the 
indices L2.3 in equation (2.11). The values of the parameters appearing in the expression 
 are given in tables 1 to 4. 

Table 1. The value of the parameters obtained when fitting the functional form (2.11) and (3.2) 
to the N, = 11, N, = 29 data for A f .  n, = 15 corresponds to the time of maximum energy. 
Errors are indicafed by giving, within parentheses. the magnitude which affects the last quoted 
digit. 

41 42 43 44 

5 0.094(8) 0.04(6) 0.02(6) 0 .OW 
6 0.140(8) O.OS(2) O.OZ(2) O.OO(1) 
7 0.208(8) 0.06(3) 0.02(3) O.Oa(l) 
8 0.302(8) 0.07(2) 0.02(2) O.OO(1) 
9 0.438(8) O.W(I) 0.03(2) O.OO(1) 

10 0.6W8) 0.103(9) O.C43(9) O.OO(1) 
11 0.870(8) 0.120(6) 0.058(7) O.Ol(l) 
12 l.i82(6) ~ 0.138(4) 0.078(5) 0.02(1) 
13 1.550(6) O.I54(3) 0.102(4) 0.02(1) 
14 1.954(6) 0.167(3) 0.129(3) 0.03(1) 
15 2.356(6) 0.177(1) 0.156(2) 0.05U) 
16 2.716(6) 0.182(2) 0.182(2) 0.07(1) 
17 3.010(6) 0.184(1) 0.205(2) 0.09(1) 
I8 3.234(6) 0.183(1) ' 0.224(2) 0.11(1) 
19 3.392(6) 0.181(1) 0.240(2) 0.12(1) 
20 3.498(6) 0.179(1) 0.252(2) 0.13(1) 
21 3.566(6) 0.178(1) 0261(2) 0.14(1) 
22 3.610(6) 0.176(1) ' 0.267(2) 0.14(1) 
23 3.638(6) 0.175(1) 0.272(2) 0.14(1) 
24 3.654(6) 0.174(1) 0.276(2) O.I4(1) 
25 3.664(6) 0.174(1) 0.278(2) 0.140) 
26 3.672(6) 0.1730) 0.280(2) 0.14(1) 
27 3.674(6) 0.173(1) 0.282(2) 0.14(1) 
29 3.674(6) 0.172(1) ~ 0.284(2) 0.14(1) 
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Table 2. The same as table 1 but for the parameters entering in A:, A:. 

nf - 
6 
7 
8 
9 

10 
11 
I2 
I3 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
29 

41 

0.006) 
O.Ol(5) 
O.Ol(3) 
O.Ol(2) 
0.02(1) 
O.OZ(8) 
0.033(6) 
0.042(5) 
0.052(4) 
0.060(3) 
0.065(3) 
0.068(2) 
0.069(2) 
0.069(2) 
0.067(2) 
0.065(2) 
O.O&r(Z) 
0.063(2) 
0.062(2) 
0.061(2) 
0.061(2) 
0.061(2) 
0.061(21 

- a2 

-0.02(6) 
-0.03(4) 

O.Ol(3) 
0.03(2) 
0.04(1) 
0.07(1) 
0.092(5) 
0.118(5) 
0.145(4) 
0.169(3) 
0.189(2) 
0.204(2) 
0.215(2) 
0.221(2) 
0.7.25(1) 
0.227(2) 
0.229(1) 
0.230(1) 
0.230(1) 
0.231(1) 
0.231(1) 
0.231(1) 
0.232(1) 

a3 

-0.122(6) 
-0.172(6) 
-0.244(6) 
-0.348(6) 
-0.496(6) 
-0.7046) 
-0.984(6) 
-1.346) 
- l,776(6) 
-2.258(6) 
-2.7466) 
-3.200(6) 
-3.590(6) 
-3.902(6) 
-4.138(6) 
-4.312(6) 
-4.434(6) 

a4 

0.0714) 
0.09(3) 
0.11(2) 
0.14(2) 
0.15(1) 
0.19(8) 
0.225(6) 
0.253(4) 
0.278(3) 
0.298(3) 
0.311(2) 
0914(2) 
0.324(2) 
0.325(2) 
0.325(1) 

as 

-0.002(6) 
O.OOS(6, 
0.018(6) 
0.034(6) 
0.062(6) 
0.109(6) 
0.174(6) 
0.272(6) 
OAM(6) . .  
0.558(6) 
0.730(6) 
0.902(6) 
1.056(6) 
1.186(6) 
1.290(6) 

0.37.4(1) 1.368(6) 
0.323(1) 1.424(6) 

-4.520(6) 0.322(1) 1.4366) 
-4.580(6) 0.321(1) 1.494(6) 
-4.620(6) 0.320(1) 1.514(6) 
-4.648(6) 0.320(1) 1.530(6) 
-4.666(6) 0.320(1) 1.540(6) 
-4.6866) 0.320(11 1.554(61 

Table 3. The same as table I but for Ule data of B!.  

nt 

3 
5 
6 
7 
8 
9 

10 
11 

_. 

12 
13 

91 

0.216(8) 
0.424(8) . ,  
0.610(8) 
0.876(8) 
1.246(8) 
1.736(8) 
2.352(8) 
3.058(8) 
3.760(8) 
4.300(8) 

14 4504(8) 
15 4.2786) 
16 3.682(8) 
17 .2.900(8) 
18 2.124(8) 
19 1.474(6) 
20 0.986(6) 
21 0.644(6) 
22 0.412(6) 
23 0.264(6) 
24 0.166(6) 

42 
0.04(3) 
0.06(1) 

93 

O.OO(3) 
O.Ol(2) 

o.o7&j 
0.090(5) 
0.109(4) 
0.130(3) 
0.152(2) 
0.175(2) . .  
0.196(1) 0.144(2) 

. .  
0.02(1) 
0.026(8) 
0.038(6) 
0.054(4) 
0.077(3) 
0.107(2) 

. .  
0.223(1) 
0.224(1) 

94 

O.OO(1) 
O.OO(1) 
O.OO(1) 
O.OO(1) 
O.Ol(1) 
0.01(1) . .  
0.03(1) 
0.05(1) 
0.08(1) 

0.216(1) 0.361(2) 0.23(1) 
0.200(2) 0.421(2) 0.21(1) 
0.181(2) 0.482(3) 0.17(1) 
0.160(3) 0.542(5) 0.12(1) 
0.141(4) 0.603(7) 0.08(1) 
0.124(6) 0.663(1) 0.04(1) 
0.108(8) 0.73(1) 0.03(1) 
0.09(1) 0.79(3) O.Ol(1) 

The previous functional form satisfactorily describes the data with a maximum xZ per 
degree of freedom equal to 4 for A; and 6 for E:. It can be used to study the main features 
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Table 4. The same as table 2 but for the dah of Bf, B:. 

nf a,  

3 O.OO(6) 
5 O.Ol(2) 
6 O.Ol(2) 
7 0.02(1) 
8 0.019(2) 
9 0.027(5) 
IO 0.037(4) 
I1 0.050(3) 
12 0.064(2) 
13 0.079(2) 
14 0.092(2) 
15 O.lOo(2) 
16 O.lOO(2) 
17 0.093(2) 
18 0.080(2) 
I9 0.064(3) 
20 0.047(4) 
21 0.031(5) 
22 0.017(7) 

a2 a3 

O.OO(6) -0.120(6) 
0.02(3) -0.292(6) 
O.OZ(2) . -0.438(6) 
0 . W )  -0.644(4) 
0.050(8) .-0.940(6) 
0.069(5) -1.354(6) 
0.095(4) -1.912(3) 
0.126(3) -2.626(6) 
0.161(2) -3.464(6) 
O.lSS(1) -4.322(6) 
0.233(1) -5.018(6) 
0.262(1) -5.35q6) 
0.282(1) -5.214(6) 
0.293(1) -4.754(6) 
0.297(2) -3.950(6) 
0.294(2) -2.998(6) 
O.ZSS(3) -2.232(6) 
0.282(4) -1.608(6) 
0.276(6) -1.132(6) 

a4 a5 

o.io(z) o.oz(6) 
0.07(4) ~ 0.006(6) 

0.12(1) 0.042(6) 
0.147(8) 0.074(6) 
0.177(6) 0.132(6) 
0210(4) 0.224(6) 
0.245(3) 0.370(6) 
0.280(2) 0.5846) 
0.313(2) O.S72(6) 

0.361(1) 1550(6) 
0.372(1) 1.796(6) 
0.372(1) 1.880(6) 
0.364(1) 1.786(6) 
0.349(2) 1.556(6) 
0.331(2) 1.264(6) ~ ~ 

0.312(3) 0.974(6) 
0.293(4) 0.724(6) 
0.277(3) 0.522(6) 

0.341(1) 1.~12(6) 

23 O.OO(1) 0.271(8) -0.784(6) 0.264(8) 0.370(6) 
24 O.OO(1) 0.27(1) -0.536(3) 0.26(1) 0.230(6) 
25 O.OO(2) 0.28(1) -0.364(6) 0.26(2) 0.180(6) 
26 O.OO(3) 0.30(2) -0.244(6) 0.27(3) 0.130(6) 
29 O.OO(3) 0.30(2) -0.244(6) 0.27(3) 0.130(6) 

of the solution. Another interesting aspect of the formula is that it can serve as a guide to 
the construction of an ansatz which could lead to an analytic expression of the solution. In 
the following section we will describe the steps that we have taken in this direction. 

3. Ansatz 

In equation (2.11) we have given an analytic expression which describes our numerical 
results within errors. It is clear that the solution is not as simple as that expression, but we 
want to explore the consequence of the fact that it shares with it the same behaviour under 
the symmetry operations of the system. Thus, we will assume the following general form 
for the solution (for all t ) :  

where Q(')(t, x ,  y. z )  = et1+)@, x ,  y, z )  is symmetric under the exchange of y and z, even 
in all the three variables, antiperiodic in y and z, periodic in x .  Q@)(t, x ,  y. t) is odd in 
x,y, even in z, antiperiodic in x,z and periodic in y. eo'@, x ,  y .  z )  is odd in the third 
variable and even in the other two, antiperiodic in x,z and periodic in y. The previous 
expression implies that the solution is cubic symmetric with and Bp(x) transforming 
in the TI @ T I  representation of this group (TI is just the spin-1 representation of rotations). 
In addition, the behaviour under translations by one period is just what is required by 
the TBC. The previous properties are more restrictive than what can be deduced by these 
symmetry properties alone. More precisely Q(') ( f ,  x ,  y .  z )  could contain an additional term 
Q('-)(t ,  x ,  y. z )  which is odd in all three variables, antiperiodic and antisymmetric in the 
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two last variables y.z. To test the presence or absence of this term we have added to Ai in 
the parametrization equation (2.11) a term 

M Garcia Pdrez and A Gonzdlez-Arroyo 

44 siu(2xx) sin(?ry) sin(xz)(cos(hy) - cos(2rr)) (3.2) 

and refitted our data for A and B. The presence of a such a term improves the value of 
the ,y2 by a factor 2/5, but the size of 44 and thus its contribution is of the order of the 
estimated size of the O(a) errors. Thus, we will keep an open attitude and explore both 
possibilities. 

Other additional information which might be crucial for finding the analytic expression 
is the behaviour under P . T. Both parity and time reversal map instantons into anti- 
instantons, but one could ask whether the product of these two leaves our solution invariant 
or not. The implications of this invariance are complicated by the future-past asymmetry 
of our gauge choice. Invariance under P . T implies 

- A,(-., - t )  = slLAi(x. r)no + isl@,n0 (3.3) 

where s20 is the gauge matrix which describes the pure gauge at t = W. The matrix i20 
was parametrized by equation (2.7) and indeed the form of the axis of rotation f /Lfl is 
precisely consistent with the restricted form where e(') = e('+) even in all three variables. 
The necessary and sufficient condition for the gauge field at CO to be of the restricted form 
e('-) = 0 is that fi is a function of xi alone. 

Expression (3.3) conflicts nevertheless with the requirement e('-) = 0 since, in 
principle, a rotation by sl, does not preserve this constraint. If we impose the condition 
that a general rotation around f /Lfl should preserve e('-) = 0 we must have 

Q'"(t, x ,  y,  z) = f(y)&(')(t,x, y. z) (3.4) 

Q")(t,x,y,z) = f(z)&"(t,x,y.z) (3.5) 

where a(')@, x ,  y, z) and x ,  y, z) are symmetric functions of the last two arguments 
y,z. We have verified that these additional constraints are reasonably well satisfied by our 
data. Thus, we arrive at a restricted parametrization consistent with OUT data: 

where pi,  pi and pi must be even functions of the three variables x ,  y, z. pi and pi  
are periodic in xi and antiperiodic in xj # xi.  and pi is antiperiodic in xi and periodic in 

The fact that this form is not a mere consequence of the symmetry properties implies 
that, when requiring self-duality of such a solution, new equations will arise which guarantee 
the form to be preserved. 

xj # X i .  

To start with, let us perform a time-independent gauge transformation and write 

A;(.. t )  = ~; ' / *A~(X ,  t ) ~ $ / ~ +  ifi; '/2a-d/z I O '  (3.7) 

This new vector potential also complies to the form (3.6) with respect to the behaviour of 
the p' functions under parity. In addition it must satisfy -Ai(-., - t )  = Ai(x, t ) .  This 
implies that pr and pt are odd in t and p;' is even in t .  We have explicitly checked 
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these properties in our numerical data and found agreement within errors. In fact, given 
self-duality it is enough that p;' = p;' ='0 at f = 0 to guarantee the appropiate behaviour 
for t # 0. At t = 0 we have been able to fit both Ai and Bj with p2 alone. 

Now imposing self-duality we obtain six equations rather than three. The first set of 
equations follows from the requirement that the pj should have the required behaviour under 
parity. The equations are 

(3.8) 
where Vj = (l/fj)aj, 6: = p~+s,,ai(f(xi))/(21flz) and T"" i s  acompletely antisymme$c 

cLjk(Vj$t + T obc pbp,) - j  * k  = 0 

tensor with -TIz3 = T'l T3I2 1. 
The solution to this equation is as follows . 

6; = RapaqpVjqo (3.9) 
where qp satisfy q: + qz - q: - 4,' = 1 and Rapa is a tensor, antisyme&c in the last 
two indices, with RIzL = = R2I3 = Rx2 = R3I4 = R323 = 1. The functions q P then 
establish a mapping from S: x R onto that hyperboloid. 

If we now plug the solution for 6 (equation (3.9)) into the self-duality equation, and 
after considerable massaging, we arrive at 

aosa = €abcSbSA (3.10) 

Vis:, = VjVks, Vi # j # k (331) 

SOS, = (3.12) 
where indices are raised and lowered with the metric gob = diag(1, -1, -1) and s1 =~ 
Lfl(q;+q;+q:+q,'); sz =2Lfl(q~q3 - q ~ q d  and% =2LfI(q1q3+qZq4). The dynamics 
(3.10) is consistent with the constraint (3.12). The most important restriction follows 
from the integrability condition of (3.11), which together with (3.12) serves to restrict 
the possible value of f ( n ) .  If we introduce the function zi = z (x i )  by the condition 
dz(x)/dx ~= f(x),~equation (3.11) forces s. to be a sum of single variable functions of the 
variables alzl + azzy+ u3z3 with ai = +l ,  -1 or 0 and C u i  = l(mod 2). On the other 
hand, Lfl2 is a sum F ( z l )  + F(zz)  + F(i3) .  One class of solutions is given by functions 
s a ( z ~  + z z + z ~ ) .  In this case (3.12) forces f ( x )  = Ax and then the whole.problem possesses 
spherical symmetry zI + zz + z3 o( Ix 12, We are then in the situation discussed in [9] and 
our equations recover all the axially symmetric solutions'including the BPST [lo] one. It is 
not easy to find other solutions to equations (3111) and (3.12).. Indeed, if we impose these 
conditions on the coefficienis of the Taylor expansion of the functions s,(z), the number of 
conditions grows faster than the number of parameters. This suggests trying polynomials 
for the functions s,. In this way we have discovered other solutions, most remarkably one 
which is defined on the torus with z = A cos(& + C) and where SI and s3 are polynomials 
of second degree in zi and sz of first degree. The solution goes to a pure gauge in t + zkoo 
but is singular at t = 0 and the total action is divergent (in the unit cell). We have been 
unable to find any solution which is satisfactory and coincides with our numerical data. 

If our solution does not follow from equations (3.10)-(3.12), one has to drop some 
of the assumptions leading to those equations. Most probably it is equation (3.6) with the 
assumed properties for pi which is wrong, since its validity is simply based on the ability to 
describe the data. Unfortunately, if we go back to the form (3.1) with Q(') = @I+)+ Q(I-1 
we have no additional equations which could allow an analytic development analogous to 
that leading to equations (3.10F(3.12). One can simply rewrite the self-duality equations 
for the Q functions, but we do not know how to select solutions going to a pure gauge in 
t = ioo.  
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4. Summary and conclusions 

In this paper, we have studied the instanton-like solution which occurs in a 3-torus with 
symmetric twist. It is remarkable that the cooling method provides a very accurate 
description of this solution which allows a systematic analysis of its properties. Our results 
imply that, with our boundary condition Ai = 0 at r = --DO, there are indeed four instanton 
and four anti-instanton solutions, all of which are (within errors) cubic symmetric and P . T 
invariant (another set of eight solutions satisfying Ai = 0 at t = +a are obtained by time 
reversal). The solution is also smooth, although singularities in sufficiently high derivatives 
are not excluded. We have given functional forms which incorporate the previously 
mentioned properties, plus additional restrictions consistent with the data. Nonetheless, the 
more restrictive form, which allows the reduction of the problem to motion on a hyperboloid 
and recovers many multi-instanton solutions on S4 does not seem to contain the solution of 
our problem. 

M Garcia Pirez and A Gonzdlez-Arroyo 
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